
Greatly improved cache update times for conditions data with
Frontier/Squid

Dave Dykstra and Lee Lueking
Computing Division, Fermilab, Batavia, IL, USA

E-mail: dwd@fnal.gov, lueking@fnal.gov

Abstract. The CMS detector project loads copies of conditions data to over 100,000 computer
cores worldwide by using a software subsystem called Frontier. This subsystem translates
database queries into HTTP, looks up the results in a central database at CERN, and caches the
results in an industry-standard HTTP proxy/caching server called Squid. One of the most
challenging aspects of any cache system is coherency, that is, ensuring that changes made to
the underlying data get propagated out to all clients in a timely manner. Recently, the Frontier
system was enhanced to drastically reduce the time for changes to be propagated everywhere
without heavily loading servers. The propagation time is now as low as 15 minutes for some
kinds of data and no more than 60 minutes for the rest of the data. This was accomplished by
taking advantage of an HTTP and Squid feature called If-Modified-Since. In order to use this
feature, the Frontier server sends a Last-Modified timestamp, but since modification times are
not normally tracked by Oracle databases, a PL/SQL program was developed to track the
modification times of database tables. We discuss the details of this caching scheme and the
obstacles overcome including database and Squid bugs.

1. Introduction
The Compact Muon Solenoid (CMS) detector project of the Large Hadron Collider (LHC) generates
too much particle collision data to be processed all at one site, so the processing is distributed around
the world. All of the over 100,000 computer cores at approximately 80 worldwide sites need access to
data describing the alignments and calibrations of the detector at the time of the collisions. This data
is known as “conditions data.” Very many cores need to access the same data, so it is well-suited for
caching. The amount of the data varies but is on the order of 100 Megabytes per processing job.

The caching subsystem that CMS uses for conditions data is called Frontier [1]. Frontier translates
database queries into HTTP, looks up the results in a central database at CERN, and caches the results
in an industry-standard HTTP proxy/caching server called Squid. One of the most challenging aspects
of any cache system is coherency, that is, ensuring that changes made to the underlying data get
propagated out to all clients in a timely manner. Recently, the Frontier system was enhanced to
drastically reduce the time for changes to be propagated everywhere without heavily loading servers.
This paper discusses the details of how this was accomplished.

2. Background: Frontier usage in CMS
The usage of Frontier in CMS is depicted in figure 1.

mailto:dwd@fnal.gov
mailto:lueking@fnal.go
mailto:lueking@fnal.go
mailto:lueking@fnal.go
mailto:dwd@fnal.gov
mailto:dwd@fnal.gov

Figure 1. How Frontier is used in CMS

CMS software running on each core of the worker node farms worldwide include a Frontier client
library that converts SQL database queries to HTTP. Each Offline site that processes collision events
has one or more Squids to cache local copies of the conditions data that they retrieve from the central
Offline Frontier servers at CERN. Those central servers each also have their own Squid for caching
plus a Frontier Servlet running under Tomcat that converts the HTTP requests to Oracle database
requests and returns the results back over HTTP.

CMS conditions data is first loaded into the Online Oracle database server (a.k.a. ORCON) which
is co-located onsite with the CMS detector, then replicated to the Offline Oracle database server (a.k.a.
ORCOFF) at the main CERN site. Over 10,000 computer cores also co-located with the detector need
simultaneous access to that data to assist in Online real-time filtering of collision events. In order to
have simultaneous access, there is a Squid on every node and they are arranged in a hierarchy where
many nodes feed four others. This eliminates the network as a limiting factor on the speed of loading
the conditions data and enables the data to be loaded to all cores in less than one minute.

3. The problem: cache coherency
Every caching system must deal with cache coherency, that is, it has to be able to track changes in the
underlying data. Previously, this was managed in Frontier by separating queries into two types: (1)
those that were expected to change and (2) those that weren't. Those that were expected to change

ORCOFF

ORCON

Offline
Frontier
Servers

Squid +
Tomcat

Tier0
Squids

Online
Frontier
Servers

Squid +
Tomcat

 Wide
 Area
 Network

CMS
Online

Tier0
Farm

Tier1, 2,
3
Squids

Tier1,
2,3
Squids

TierN
Farm

TierN
Farm

CMS Offline

were set to expire sooner than those that weren't. In CMS Offline, even the short times were still quite
high, however: most were once per day. The long times were very high: a year. Setting the times
much shorter would result in much higher delays and stress on the infrastructure, because the data had
to be reloaded all the way from the database, even if it hadn't changed.

The problem with this previous approach was that there were often times when data would change
in the database even though it wasn't supposed to. There were many occasions where caches had to be
manually cleared.

In CMS Online, everything was set to be expired very frequently so there wasn't a coherency
problem. However, all conditions data had to be reloaded every time the filtering was started. That
took less than a minute, but during that time all collisions at the very expensive detector are lost, so
that is still too long: it was required to be less than 10 seconds. Fortunately, the new solution
(described below) re-validates expired cached items so unless the data changes, it doesn't need to be
completely reloaded and so is much faster.

4. The solution: If-Modified-Since
The HTTP protocol [2] and Squid already had a solution to the cache coherency problem: if a server
supplies a Last-Modified timestamp in the HTTP header of a response, and a query comes to Squid
for an object in its cache that has expired, Squid automatically adds an If-Modified-Since header to
the request including that timestamp. The server may then compare the cached timestamp to a
timestamp currently associated with the data, and if nothing has changed it can send a very small NOT
MODIFIED response rather than reloading all of the data. Figures 2 and 3 show an example if this.
Figure 2 shows the steps to fill the cache and figure 3 shows the steps after the response has expired.

 Client 1 Squids Tomcat Oracle

 Initiate request

 In cache? No

 Look up table
 modification time

 Return modtime

 Save modtime
 Look up data

 Return data

 Convert response
 set expiration time
 and Last-Modified

 Cache response &
 send to client

 Receive response

Figure 2: An example of filling data into the cache

In figure 2, a client initiates an SQL request, converts it to HTTP, and sends the request to its local
Squid. The Squid finds that the result is not yet in the cache, so it forwards the request on to the
central Squid (the second Squid is not shown separately in the figure since both Squids do the same
thing.) When the request reaches the Frontier Tomcat, the servlet converts the request back to SQL

and parses the SQL to find the database table name that is being queried. In this example it has not
recently looked up the timestamp for the table so it asks Oracle for the table modification timestamp.
Oracle returns the timestamp, and Tomcat saves it and then right away asks Oracle for the data. After
Oracle returns the data, Tomcat converts it into an HTTP response and includes in the response the
timestamp in a Last-Modified header and also includes a header indicating the cache expiration time
for the response. The Squids cache the response and sends it back to the client.

 Client 2 Squids Tomcat Oracle

 Initiate request

 In cache? Yes, expired.
 Send If-Modified-Since

 Table modtime saved recently?
 Yes. Has time changed? No
 Send NOT MODIFIED
 + new expiration time

 Update expiration time
 Send cached response

 Receive response

Figure 3. Another example client request after data item expires

In figure 3, a different client using the same Squid does the same query, sometime later after the
cached result expired. The Squid determines that the item is in the cache, but expired. Since there is a
Last-Modified header in the saved item, Squid adds an If-Modified-Since header to the request and
sends it up to Tomcat. In this example Tomcat finds that it has looked up the modification time
recently (from another transaction not shown) so it does not need to contact Oracle at all. It simply
returns the very small NOT MODIFIED response plus a new expiration time. Squid updates the
expiration time on its cached item and sends the response back to the client.

So the long-distance traffic, and the work that Tomcat and Oracle have to do, is greatly reduced
when the data is not modified. Instead of including the full data payload, the response is a very small
message. Tomcat saves the per-table modification times and re-uses them for up to 5 minutes
(typically) so if there are many queries for the same table close together Oracle doesn't have to be
contacted every time. These things allow us to greatly reduce the expiration times without
overloading the servers, and so allow clients to notice changes much faster.

5. Getting modification times from Oracle databases
The most challenging part of this deployment was that the Oracle database does not normally track
modification times. However, this capability was added using PL/SQL scripts. Three different
approaches have been taken:

5.1. SQL triggers
The first approach was to use SQL triggers to track all table modifications and keep a timestamp in a
table in each account. This worked, but database administrators worried that the triggers would be too
heavy of a load on the database servers during updates so it was never deployed.

5.2. DBMS_CHANGE_NOTIFICATION
The second approach was to use Oracle's DBMS_CHANGE_NOTIFICATION package to update
timestamps upon database COMMITs, and triggers to only track table CREATEs and DROPs. A bug

was found that limited the length of account plus table names to an unreasonably short amount, but
Oracle fixed that, so this is the approach that was first deployed. However, experience in production
showed a few more problems:

1)Sometimes it stopped updating the timestamps.
2)The PL/SQL script for this had the inconvenience along with solution #1 of having to be installed

in every account, and had to be reinstalled after an account's entire content is copied to another
account.

3)Sometimes it interfered with streaming data from one server to another, as CMS does from its
Online to Offline databases.

5.3. Copying from ALL_TAB_MODIFICATIONS
The final approach was to use Oracle's DBMS_STATS package to put modification times into an
ALL_TAB_MODIFICATIONS view, and copy the timestamps from there to a single table for the
database. This method was put into production in March 2009. It requires periodically flushing the
database statistics, so a disadvantage is that it adds an additional 5 minute delay for changes to be
noticed. The big advantage is that only has to be set up once per database which greatly reduces the
maintenance work.

6. Squid bugs
We also encountered two Squid bugs that affected this deployment that were fixed in a very timely
manner. Without these recent fixes, it would not have been possible to deploy this in systems like ours
that have a Squid that feeds other Squids.

6.1. An 8 year old bug that had just been fixed
The oldest open bug in the Squid bug tracking system, bug #7 from August 2000, reported that HTTP
headers were not rewritten in the cache when they are updated. It is necessary to update the cached
Date header in order to use If-Modified-Since when one Squid feeds another. Very fortunately for us,
the latest stable Squid release 2.7 had finally fixed this 1.5 months before we ran into it so all we had
to do was upgrade to that version.

6.2. A related bug we found
During testing, we found a case where the Date header of cached items was still not updated. This
was Squid bug #2430 and was fixed in October 2008 in Squid release 2.7STABLE5.

7. Effect on Frontier infrastructure
The load on the 3 central Frontier servers at CERN did go up significantly when we cut over in mid-
December 2008 but they still have plenty of spare capacity. Figure 4 shows a plot of the combined
number of requests per minute for the 3 central Squids over the last year (averaged per day).

Figure 4: Requests per minute on CMS central squids at CERN over the last year

The green area is the requests received from all other Squids and the blue line is the requests
passed on to Tomcat. Squids at the Tier sites often serve 40k+ requests per minute each and under
extreme conditions some have been measured as high as 280k requests per minute, so a few thousand
requests per minute for each of the three servers is easy. Also, almost all of the requests that are
passed on to Tomcat are the very small revalidation requests and most of those don't contact the Oracle
database.

8. Conclusions
This new cache coherency mechanism has significantly reduced the time it takes for changes to
propagate, and has successfully avoided heavily loading the CMS conditions data infrastructure. It
has been a great help in improving availability and avoiding the need for interventions by the people
responsible for maintaining the infrastructure. We took advantage of an HTTP capability that has
been available for a long time, but we couldn't have done it much sooner using Squid because the
capability was only very recently fully implemented in Squid.

For more information on Frontier see its web home page http://frontier.cern.ch.

9. Acknowledgements
We would like to thank DOE and NSF for support of the project under which this work was
conducted. This effort is the result of many within CMS working together to anticipate the needs of
the experiment. The CMS Computing and Offline Software organization has provided the overall data
model and software framework in which Frontier is used. We greatly thank the numerous individuals
within CMS and CERN IT who have contributed to its deployment, testing, and operation. Fermilab
is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the
United States Department of Energy.

References
[1] Blumenfeld B, Dykstra D, Lueking L and Wicklund E 2008 CMS conditions data access using

FroNTier J. Phys.: Conf. Ser. 119 072007 (7pp)
[2] Berners-Lee T, Fielding R. and Frystyk H 1996 RFC 1945

http://frontier.cern.ch/

